Edge Disjoint Hamilton Cycles

ثبت نشده
چکیده

In the late 70s, it was shown by Komlós and Szemerédi ([7]) that for p = lnn+ln lnn+c n , the limit probability for G(n, p) to contain a Hamilton cycle equals the limit probability for G(n, p) to have minimum degree at least 2. A few years later, Ajtai, Komlós and Szemerédi ([1]) have shown a hitting time version of this in the G(n,m) model. Say a graph G has property H if it contains bδ(G)/2c edge disjoint Hamilton cycles, plus a further edge disjoint near perfect matching in the case δ(G) is odd. Is it true that for every 0 ≤ p ≤ 1 the random graph G(n, p) has property H with high probability? This is clear whenever δ(G) = 0. In the early 80s, Bollobás and Frieze ([3]) have proved that conjecture for δ(G) = O(1). In this talk I plan to prove the result for p(n) ≤ (1 + o(1)) lnn/n. This is a result of Frieze and Krivelevich from ’08 ([4]). Remark 1. The conjecture is nowadays known to be true for every p. It was proved for the range ln n/n ≤ p ≤ 1 − ln n/n1/4 by Knox, Kühn and Osthus in ’13 ([6]), in a rather technically complicated paper. Later, Krivelevich and Samotij ([8]) have closed the gap for the sparse case, and Kühn and Osthus ([9]) have closed the gap for the dense case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automorphisms generating disjoint Hamilton cycles in star graphs

In the first part of the thesis we define an automorphism φn for each star graph Stn of degree n − 1, which yields permutations of labels for the edges of Stn taken from the set of integers {1, . . . , bn/2c}. By decomposing these permutations into permutation cycles, we are able to identify edge-disjoint Hamilton cycles that are automorphic images of a known two-labelled Hamilton cycle H1 2(n)...

متن کامل

Symmetry and optimality of disjoint Hamilton cycles in star graphs

Multiple edge-disjoint Hamilton cycles have been obtained in labelled star graphs Stn of degree n-1, using number-theoretic means, as images of a known base 2-labelled Hamilton cycle under label-mapping automorphisms of Stn. However, no optimum bounds for producing such edge-disjoint Hamilton cycles have been given, and no positive or negative results exist on whether Hamilton decompositions ca...

متن کامل

Maximal sets of hamilton cycles in complete multipartite graphs

A set S of edge-disjoint hamilton cycles in a graph G is said to be maximal if the edges in the hamilton cycles in S induce a subgraph H of G such that G EðHÞ contains no hamilton cycles. In this context, the spectrum SðGÞ of a graph G is the set of integersm such that G contains a maximal set of m edge-disjoint hamilton cycles. This spectrum has

متن کامل

Edge-disjoint Hamilton Cycles in Regular Graphs of Large Degree

Theorem 1 implies that if G is a A:-regular graph on n vertices and n ^ 2k, then G contains Wr(n + 3an + 2)] edge-disjoint Hamilton cycles. Thus we are able to increase the bound on the number of edge-disjoint Hamilton cycles by adding a regularity condition. In [5] Nash-Williams conjectured that if G satisfies the conditions of Theorem 2, then G contains [i(n + l)] edge-disjoint Hamilton cycle...

متن کامل

Hamilton decompositions of regular expanders: Applications

In a recent paper, we showed that every sufficiently large regular digraph G on n vertices whose degree is linear in n and which is a robust outexpander has a decomposition into edge-disjoint Hamilton cycles. The main consequence of this theorem is that every regular tournament on n vertices can be decomposed into (n − 1)/2 edge-disjoint Hamilton cycles, whenever n is sufficiently large. This v...

متن کامل

Edge-disjoint Hamilton cycles in random graphs

We show that provided log n/n ≤ p ≤ 1 − n−1/4 log n we can with high probability find a collection of bδ(G)/2c edge-disjoint Hamilton cycles in G ∼ Gn,p, plus an additional edge-disjoint matching of size bn/2c if δ(G) is odd. This is clearly optimal and confirms, for the above range of p, a conjecture of Frieze and Krivelevich.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015